Oladipupo, O. E.; Prescott, M. C.; Blevins, E. R.; Gray, J. L.; Cameron, C. G.; Qu, F.; Ward, N. A.; Pierce, A. L.; Collinson, E. R.; Hall, J. F.; Park, S.; Kim, Y.; McFarland, S. A.; Fedin, I.; Papish, E. T. Ruthenium Complexes with Protic Ligands: Influence of the Position of OH Groups and π Expansion on Luminescence and Photocytotoxicity. Int. J. Mol. Sci.2023, 24 (6), 5980. https://doi.org/10.3390/ijms24065980
Cole, H.D.; Eroy, M.; Roque III, J.A.; Shi G.; Guirguis, M.; Fakhry, J.; Cameron, C.G.; Obaid, G.; McFarland, S.A., Establishing a Robust and Reliable Response from a Potent Osmium-Based Photosensitizer Via Lipid Nanoformulation. Photochem. Photobiol.2023, 99, 751–760. https://doi.org/10.1111/php.13756
Chettri, A.; Yang, T.; Cole, H.D.; Shi, G.; Cameron, C.G.; McFarland, S.A.; Dietzek-Ivansic, B., Using Biological Photophysics to Map the Excited-State Topology of Molecular Photosensitizers for Photodynamic Therapy. Angew. Chem. Int. Ed.2023, 62, e202301452. https://doi.org/10.1002/anie.202301452
2022
Shah, D.; Eroy, M.; Fakhry, J.; Moffat, A.; Fritz, K.; Cole, H.D.; Cameron, C.G.; McFarland, S.A.; Obaid, G., Enabling In Vivo Optical Imaging of an Osmium Photosensitizer by Micellar Formulation. Pharmaceutics2022, 14, 2426. https://doi.org/10.3390/pharmaceutics14112426
Munegowda, M.A.; Manalac, A.; Weersink, M.; McFarland, S.A.; Lilge, L., Ru(II) Containing Photosensitizers for Photodynamic Therapy: a Critique on Reporting and an Attempt to Compare Efficacy. Coord. Chem. Rev.2022, 214712. https://doi.org/10.1016/j.ccr.2022.214712
Handlovic, T.; Wahab, M. F.; Cole, H.; Alatrash, N.; Ramasamy E.; MacDonnell, F.; McFarland, S.A.; Armstrong, D. W., Insights into Enantioselective Separations of Ionic Metal Complexes by Sub/Supercritical Fluid Chromatography. Anal. Chimica Acta 2022, 340156. https://doi.org/10.1016/j.aca.2022.340156
Obaid, G.; Bano, S.; Thomsen, H.; Callaghan, S.; Shah, N.; Swain, J. W. R.; Jin, W.; Ding, X.; Cameron, C. G.; McFarland, S. A.; Wu, J.; Vangel, M.; Stoilova-McPhie, S.; Zhao, J.; Mino-Kenudson, M.; Lin, C.; Hasan, T., Remediating Desmoplasia with EGFR-Targeted Photoactivable Multi-Inhibitor Liposomes Doubles Overall Survival in Pancreatic Cancer. Adv. Sci.2022, 2104594. https://doi.org/10.1002/advs.202104594
Roque III, J. A.; Cole, H. D.; Barrett, P. C.; Lifshits, L. M.; Hodges, R. O.; Kim, S.; Deep, G.; Francés-Monerris, A.; Alberto, M. E.; Cameron, C. G.; McFarland, S. A. Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. J. Am. Chem. Soc.2022, 144, 8317–8336 https://doi.org/10.1021/jacs.2c02475(Selected for JACS Spotlights: https://doi.org/10.1021/jacs.2c04867)
Cole, H.D.; Roque III, J. A.; Shi, G.; Lifshits, L.M.; Ramasamy, E.; Barrett, P. C.; Hodges, R.; Cameron, C.G.; McFarland, S.A. Anticancer Agent with Inexplicable Potency in Extreme Hypoxia: Characterizing a Light-Triggered Ruthenium Ubertoxin. J. Am. Chem. Soc.2022, 144, 9543–9547 https://doi.org/10.1021/jacs.1c09010
Chettri, A.; Cole, H. D.; Roque III, J. A.; Schneider, K. R. A.; Yang, T.; Cameron, C. G.; McFarland, S. A.; Dietzek-Ivanšić, B. Interaction with a Biomolecule Facilitates the Formation of the Function-Determining Long-Lived Triplet State in a Ruthenium Complex for Photodynamic Therapy. J. Phys. Chem. A, 2022, 126, 1336–1344 https://doi.org/10.1021/acs.jpca.1c09968
Duguay, B.A.; Herod, A.; Pringle, E.S.; Monro, S.M.A.; Hetu, M.; Cameron, C.G.; McFarland, S.A.; McCormick, C. Photodynamic Inactivation of Human Coronaviruses. Viruses2022, 14, 110. https://doi.org/10.3390/v14010110
Konda, P.; Roque III, J. A.; Lifshits, L. M.; Alcos, A.; Azzam, E.; Shi, G.; Cameron, C. G.; McFarland, S. A.; Gujar S. Photodynamic therapy of melanoma with new, structurally similar, NIR-absorbing ruthenium (II) complexes promotes tumor growth control via distinct hallmarks of immunogenic cell death. Am. J. Cancer Res.2022, 12, 210-228. https://pubmed.ncbi.nlm.nih.gov/35141014/
Oladipupo, O.; Brown, S. R.; Lamb, R. W.; Gray, J. L.; Cameron, C. G.; DeRegnaucourt, A. R.; Ward, N. A.; Hall, J. F.; Xu, Y.; Petersen, C.; Qu, F.; Shrestha, A. B.; Thompson, M. K.; Bonizzoni, M.; Webster, C. E.; McFarland, S. A.; Kim, Y.; Papish, E. T. Light-Responsive and Protic Ruthenium Compounds Bearing Bathophenanthroline and Dihydroxybipyridine Ligands Achieve Nanomolar Toxicity Towards Breast Cancer Cells. Photochem. Photobiol.2022, 98, 102–116 (Invited contribution to the Karen Brewer Memorial Issue, first published online Aug 2021 ) https://doi.org/10.1111/php.13508
Cole, H. D.; Roque III, J. A.; Lifshits, L. M.; Hodges, R.; Barrett, P. C.; Havrylyuk, D.; Heidary, D.; Ramasamy, E.; Cameron, C. G.; Glazer, E. C.; McFarland, S. A. Fine-feature Modifications to Strained Ruthenium Complexes Radically Alter Their Hypoxic Anticancer Activity. Photochem. Photobiol. 2022, 98, 73–84. (Invited contribution to the Karen Brewer Memorial Issue, first published online Feb 2021). https://doi.org/10.1111/php.13395
2021
Lifshits, L. M.; Roque III, J. A.; Ramasamya E.; Thummel, R. P.; Cameron, C. G.; McFarland, S. A. Ruthenium Photosensitizers for NIR PDT Require Lowest-Lying Triplet Intraligand (3IL) Excited States. J. Photochem. Photobiol.2021, 8, 100067 https://doi.org/10.1016/j.jpap.2021.100067
Chettri, A.; Schneider, K. R. A.; Cole, H.D.; Roque, J. A.; Cameron, C. G.; McFarland, S. A.; Dietzek, B. String-Attached Oligothiophene Substituents Determine the Fate of Excited States in Ruthenium Complexes for Photodynamic Therapy. J. Phys. Chem. A2021, 125, 6985–6994 https://doi.org/10.1021/acs.jpca.1c04900
Armstrong, D. W.; Yu, J.; Cole, H. D.; McFarland, S. A.; Nafie, J. Chiral resolution and absolute configuration determination of new metal-based photodynamic therapy antitumor agents. J. Pharm. Biomed. Anal. 2021, 204, 114233–114240. https://doi.org/10.1016/j.jpba.2021.114233
Bataglioli, J. C.; Gomes, L. M. F.; Maunoir, C.; Smith, J. R.; Cole, H. D.; McCain, J.; Sainuddin, T.; Cameron, C. G.; McFarland, S. A.; Storr, T. Modification of Amyloid-Beta Peptide Aggregation via Photoactivation of Strained Ru(II) Polypyridyl Complexes. Chem. Sci. 2021, 12 (21), 7510–7520. https://doi.org/10.1039/D1SC00004G
Perttilä, R.; Roque, J.; Orsila, L.; Ylöniemi, Z.; Kokko, E.; Cameron, C. G.; McFarland, S. A.; Uusimaa, P. Towards High-Throughput Light-Activated Drug Discovery Using Automated Plate Illuminator. In Proc. SPIE 11628 Mechanisms and Techniques in Photodynamic Therapy and Photobiomodulation, 2021, 116280F. https://doi.org/10.1117/12.2578408
Qu, F.; Lamb, R. W.; Cameron, C. G.; Park S.; Oladipupo, O.; Gray, J. L.; Xu, Y.; Cole, H. D.; Bonizzoni, M.; Kim, Y.; McFarland, S. A.; Webster, C. E.; Papish, E. T. Singlet Oxygen Formation vs Photodissociation for Light-Responsive Protic Ruthenium Anticancer Compounds: The Oxygenated Substituent Determines Which Pathway Dominates. Inorg. Chem.2021, 60, 2138-2148. https://doi.org/10.1021/acs.inorgchem.0c02027
Chettri, A.; Roque, J. A.; Schneider, K. R. A.; Cole, H. D.; Cameron C. G.; McFarland, S. A.; Dietzek, B. It Takes Three to Tango – the length of the oligothiophene determines the nature of the long-lived excited state and the resulting photocytotoxicity of a Ru(II) photodrug. ChemPhotoChem.2021, 5, 1. https://doi.org/10.1002/cptc.202000283
Konda, P.; Lifshits, L. M.; Roque III, J. A.; Cole, H. D.; Cameron, C. G.; McFarland, S. A.; Gujar, S. Discovery of Immunogenic Cell Death-Inducing Ruthenium-Based Photosensitizers for Anticancer Photodynamic Therapy. OncoImmunology2021, 10, 1863626. https://doi.org/10.1080/2162402X.2020.1863626
2020
Roque, J. A.; Barrett, P. C.; Cole, H. D.; Lifshits, L. M.; Bradner, E.; Shi, G.; von Dohlen, D.; Kim, S.; Russo, N.; Deep, G.; Cameron, C. G.; Alberto, M. E.; McFarland, S. A. Os(II) Oligothienyl Complexes as a Hypoxia-Active Photosensitizer Class for Photodynamic Therapy. Inorg. Chem.2020, 59 (22), 16341–16360. https://doi.org/10.1021/acs.inorgchem.0c02137
Smithen, D. A.; Monro, S.; Pinto, M.; Roque, J.; Diaz-Rodriguez, R. M.; Yin, H.; Cameron, C. G.; Thompson, A.; McFarland, S. A. Bis[Pyrrolyl Ru(II)] Triads: A New Class of Photosensitizers for Metal–Organic Photodynamic Therapy. Chem. Sci.2020, 11, 12047–12069. https://doi.org/10.1039/D0SC04500D
Roque III, J. A.; Barrett, P. C.; Cole, H. D.; Lifshits, L. M.; Shi, G.; Monro, S.; von Dohlen, D.; Kim, S.; Russo, N.; Deep, G.; Cameron, C. G.; Alberto, M. E.; McFarland, S. A. Breaking the Barrier: An Osmium Photosensitizer with Unprecedented Hypoxic Phototoxicity for Real World Photodynamic Therapy. Chem. Sci.2020, 11, 9784–9806. https://doi.org/10.1039/D0SC03008B
Lifshits, L. M.; Roque III, J. A.; Konda, P.; Monro, S.; Cole, H. D.; von Dohlen, D.; Kim, S.; Deep, G.; Thummel, R. P.; Cameron, C. G.; Gujar, S.; McFarland, S. A. Near-Infrared Absorbing Ru(II) Complexes Act as Immunoprotective Photodynamic Therapy (PDT) Agents against Aggressive Melanoma. Chem. Sci.2020, 11 (43), 11740–11762. https://doi.org/10.1039/D0SC03875J
Al Subeh, Z. Y.; Raja, H. A.; Monro, S.; Flores-Bocanegra, L.; El-Elimat, T.; Pearce, C. J.; McFarland, S. A.; Oberlies, N. H. Enhanced Production and Anticancer Properties of Photoactivated Perylenequinones. J. Nat. Prod.2020, 83 (8), 2490–2500. https://doi.org/10.1021/acs.jnatprod.0c00492
Lifshits, L. M.; Roque, J. A.; Cole, H. D.; Thummel, R. P.; Cameron, C. G.; McFarland, S. A. NIR‐Absorbing Ru II Complexes Containing Α‐Oligothiophenes for Applications in Photodynamic Therapy. ChemBioChem2020, 21, 3594–3607. https://doi.org/10.1002/cbic.202000419
Schneider, K. R. A.; Chettri, A.; Cole, H. D.; Reglinski, K.; Brückmann, J.; Roque, J. A.; Stumper, A.; Nauroozi, D.; Schmid, S.; Lagerholm, C. B.; Rau, S.; Bäuerle, P.; Eggeling, C.; Cameron, C. G.; McFarland, S. A.; Dietzek, B. Intracellular Photophysics of an Osmium Complex Bearing an Oligothiophene Extended Ligand. Chem. – Eur. J.2020, 26 (65), 14844–14851. https://doi.org/10.1002/chem.202002667
Chamberlain, S.; Cole, H. D.; Roque, J.; Bellnier, D.; McFarland, S. A.; Shafirstein, G. TLD1433-Mediated Photodynamic Therapy with an Optical Surface Applicator in the Treatment of Lung Cancer Cells In Vitro. Pharmaceuticals2020, 13 (7), 137. https://doi.org/10.3390/ph13070137
Chen, Q.; Ramu, V.; Aydar, Y.; Groenewoud, A.; Zhou, X.-Q.; Jager, M. J.; Cole, H.; Cameron, C. G.; McFarland, S. A.; Bonnet, S.; Snaar-Jagalska, B. E. TLD1433 Photosensitizer Inhibits Conjunctival Melanoma Cells in Zebrafish Ectopic and Orthotopic Tumour Models. Cancers2020, 12 (3), 587. https://doi.org/10.3390/cancers12030587
McFarland, S. A.; Mandel, A.; Dumoulin-White, R.; Gasser, G. Metal-Based Photosensitizers for Photodynamic Therapy: The Future of Multimodal Oncology? Curr. Opin. Chem. Biol.2020, 56, 23–27. https://doi.org/10.1016/j.cbpa.2019.10.004.
Roque, J.; Havrylyuk, D.; Barrett, P. C.; Sainuddin, T.; McCain, J.; Colón, K.; Sparks, W. T.; Bradner, E.; Monro, S.; Heidary, D.; Cameron, C. G.; Glazer, E. C.; McFarland, S. A. Strained, Photoejecting Ru(II) Complexes That Are Cytotoxic Under Hypoxic Conditions. Photochem. Photobiol.2020, 96 (2), 327–339. https://doi.org/10.1111/php.13174
Ghosh, G.; Yin, H.; Monro, S. M. A.; Sainuddin, T.; Lapoot, L.; Greer, A.; McFarland, S. A. Synthesis and Characterization of Ru(II) Complexes with π‐Expansive Imidazophen Ligands for the Photokilling of Human Melanoma Cells. Photochem. Photobiol.2020, 96 (2), 349–357. https://doi.org/10.1111/php.13177
2019
McCain, J.; Colón, K. L.; Barrett, P. C.; Monro, S. M. A.; Sainuddin, T.; Roque III, J.; Pinto, M.; Yin, H.; Cameron, C. G.; McFarland, S. A. Photophysical Properties and Photobiological Activities of Ruthenium(II) Complexes Bearing π-Expansive Cyclometalating Ligands with Thienyl Groups. Inorg. Chem.2019, 58 (16), 10778–10790. https://doi.org/10.1021/acs.inorgchem.9b01044
Liu, B.; Monro, S.; Li, Z.; Jabed, M. A.; Ramirez, D.; Cameron, C. G.; Colón, K.; Roque, J.; Kilina, S.; Tian, J.; McFarland, S. A.; Sun, W. New Class of Homoleptic and Heteroleptic Bis(Terpyridine) Iridium(III) Complexes with Strong Photodynamic Therapy Effects. ACS Appl. Bio Mater.2019, 2 (7), 2964–2977. https://doi.org/10.1021/acsabm.9b00312
Liu, B.; Lystrom, L.; Cameron, C. G.; Kilina, S.; McFarland, S. A.; Sun, W. Monocationic Iridium(III) Complexes with Far-Red Charge-Transfer Absorption and Near-IR Emission: Synthesis, Photophysics, and Reverse Saturable Absorption: Monocationic Iridium(III) Complexes with Far-Red Charge-Transfer Absorption and Near-IR Emission: Synthesis, Photophysics, and Reverse Saturable Absor. Eur. J. Inorg. Chem.2019, 2019 (16), 2208–2215. https://doi.org/10.1002/ejic.201900156
Reichardt, C.; Monro, S.; Sobotta, F. H.; Colón, K. L.; Sainuddin, T.; Stephenson, M.; Sampson, E.; Roque, J.; Yin, H.; Brendel, J. C.; Cameron, C. G.; McFarland, S.; Dietzek, B. Predictive Strength of Photophysical Measurements for in Vitro Photobiological Activity in a Series of Ru(II) Polypyridyl Complexes Derived from π-Extended Ligands. Inorg. Chem.2019, 58 (5), 3156–3166. https://doi.org/10.1021/acs.inorgchem.8b03223
Wang, L.; Monro, S.; Cui, P.; Yin, H.; Liu, B.; Cameron, C. G.; Xu, W.; Hetu, M.; Fuller, A.; Kilina, S.; McFarland, S. A.; Sun, W. Heteroleptic Ir(III)N6 Complexes with Long-Lived Triplet Excited States and in Vitro Photobiological Activities. ACS Appl. Mater. Interfaces2019, 11 (4), 3629–3644. https://doi.org/10.1021/acsami.8b14744
Monro, S.; Colón, K. L.; Yin, H.; Roque, J.; Konda, P.; Gujar, S.; Thummel, R. P.; Lilge, L.; Cameron, C. G.; McFarland, S. A. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem. Rev.2019, 119 (2), 797–828. https://doi.org/10.1021/acs.chemrev.8b00211
Monro, S.; Cameron, C. G.; Zhu, X.; Colón, K. L.; Yin, H.; Sainuddin, T.; Hetu, M.; Pinto, M.; Fuller, A.; Bennett, L.; Roque, J.; Sun, W.; McFarland, S. A. Synthesis, Characterization and Photobiological Studies of Ru(II) Dyads Derived from α -Oligothiophene Derivatives of 1,10-Phenanthroline. Photochem. Photobiol.2019, 95 (1), 267–279. https://doi.org/10.1111/php.13012
Ghosh, G.; Belh, S. J.; Chiemezie, C.; Walalawela, N.; Ghogare, A. A.; Vignoni, M.; Thomas, A. H.; McFarland, S. A.; Greer, E. M.; Greer, A. S,S-Chiral Linker Induced U Shape with a Syn-Facial Sensitizer and Photocleavable Ethene Group. Photochem. Photobiol.2019, 95 (1), 293–305. https://doi.org/10.1111/php.13000
Liu, B.; Monro, S.; Jabed, M. A.; Cameron, C. G.; Colón, K. L.; Xu, W.; Kilina, S.; McFarland, S. A.; Sun, W. Neutral Iridium(III) Complexes Bearing BODIPY-Substituted N-Heterocyclic Carbene (NHC) Ligands: Synthesis, Photophysics, in Vitro Theranostic Photodynamic Therapy, and Antimicrobial Activity. Photochem. Photobiol. Sci.2019, 18 (10), 2381–2396. https://doi.org/10.1039/C9PP00142E
2018
Monjo, A.; Pringle, E.; Thornbury, M.; Duguay, B.; Monro, S.; Hetu, M.; Knight, D.; Cameron, C.; McFarland, S.; McCormick, C. Photodynamic Inactivation of Herpes Simplex Viruses. Viruses2018, 10 (10), 532. https://doi.org/10.3390/v10100532
Liu, B.; Monro, S.; Lystrom, L.; Cameron, C. G.; Colón, K.; Yin, H.; Kilina, S.; McFarland, S. A.; Sun, W. Photophysical and Photobiological Properties of Dinuclear Iridium(III) Bis-Tridentate Complexes. Inorg. Chem.2018, 57 (16), 9859–9872. https://doi.org/10.1021/acs.inorgchem.8b00789
Ghosh, G.; Colón, K. L.; Fuller, A.; Sainuddin, T.; Bradner, E.; McCain, J.; Monro, S. M. A.; Yin, H.; Hetu, M. W.; Cameron, C. G.; McFarland, S. A. Cyclometalated Ruthenium(II) Complexes Derived from α-Oligothiophenes as Highly Selective Cytotoxic or Photocytotoxic Agents. Inorg. Chem.2018, 57 (13), 7694–7712. https://doi.org/10.1021/acs.inorgchem.8b00689
Cruickshank, B.; Giacomantonio, M.; Marcato, P.; McFarland, S.; Pol, J.; Gujar, S. Dying to Be Noticed: Epigenetic Regulation of Immunogenic Cell Death for Cancer Immunotherapy. Front. Immunol.2018, 9, 654. https://doi.org/10.3389/fimmu.2018.00654
Reichardt, C.; Schneider, K. R. A.; Sainuddin, T.; Wächtler, M.; McFarland, S. A.; Dietzek, B. Excited State Dynamics of a Photobiologically Active Ru(II) Dyad Are Altered in Biologically Relevant Environments. J. Phys. Chem. A2017, 121 (30), 5635–5644. https://doi.org/10.1021/acs.jpca.7b04670
Smithen, D. A.; Yin, H.; Beh, M. H. R.; Hetu, M.; Cameron, T. S.; McFarland, S. A.; Thompson, A. Synthesis and Photobiological Activity of Ru(II) Dyads Derived from Pyrrole-2-Carboxylate Thionoesters. Inorg. Chem.2017, 56 (7), 4121–4132. https://doi.org/10.1021/acs.inorgchem.7b00072
Wang, L.; Yin, H.; Jabed, M. A.; Hetu, M.; Wang, C.; Monro, S.; Zhu, X.; Kilina, S.; McFarland, S. A.; Sun, W. π-Expansive Heteroleptic Ruthenium(II) Complexes as Reverse Saturable Absorbers and Photosensitizers for Photodynamic Therapy. Inorg. Chem.2017, 56 (6), 3245–3259. https://doi.org/10.1021/acs.inorgchem.6b02624
Wang, L.; Yin, H.; Cui, P.; Hetu, M.; Wang, C.; Monro, S.; Schaller, R. D.; Cameron, C. G.; Liu, B.; Kilina, S.; McFarland, S. A.; Sun, W. Near-Infrared-Emitting Heteroleptic Cationic Iridium Complexes Derived from 2,3-Diphenylbenzo[g]Quinoxaline as in Vitro Theranostic Photodynamic Therapy Agents. Dalton Trans.2017, 46 (25), 8091–8103. https://doi.org/10.1039/C7DT00913E
2016
Reichardt, C.; Sainuddin, T.; Wächtler, M.; Monro, S.; Kupfer, S.; Guthmuller, J.; Gräfe, S.; McFarland, S.; Dietzek, B. Influence of Protonation State on the Excited State Dynamics of a Photobiologically Active Ru(II) Dyad. J. Phys. Chem. A2016, 120 (32), 6379–6388. https://doi.org/10.1021/acs.jpca.6b05957
Sainuddin, T.; Pinto, M.; Yin, H.; Hetu, M.; Colpitts, J.; McFarland, S. A. Strained Ruthenium Metal–Organic Dyads as Photocisplatin Agents with Dual Action. J. Inorg. Biochem.2016, 158, 45–54. https://doi.org/10.1016/j.jinorgbio.2016.01.009
Culf, A. S.; Yin, H.; Monro, S.; Ghosh, A.; Barnett, D. A.; Ouellette, R. J.; Čuperlović-Culf, M.; McFarland, S. A. A Spectroscopic Study of Substituted Anthranilic Acids as Sensitive Environmental Probes for Detecting Cancer Cells. Bioorg. Med. Chem.2016, 24 (5), 929–937. https://doi.org/10.1016/j.bmc.2015.12.044
Sainuddin, T.; McCain, J.; Pinto, M.; Yin, H.; Gibson, J.; Hetu, M.; McFarland, S. A. Organometallic Ru(II) Photosensitizers Derived from π-Expansive Cyclometalating Ligands: Surprising Theranostic PDT Effects. Inorg. Chem.2016, 55 (1), 83–95. https://doi.org/10.1021/acs.inorgchem.5b01838.
Wang, C.; Lystrom, L.; Yin, H.; Hetu, M.; Kilina, S.; McFarland, S. A.; Sun, W. Increasing the Triplet Lifetime and Extending the Ground-State Absorption of Biscyclometalated Ir(III) Complexes for Reverse Saturable Absorption and Photodynamic Therapy Applications. Dalton Trans.2016, 45 (41), 16366–16378. https://doi.org/10.1039/C6DT02416E
2015 and older
Martinez-Farina, C. F.; Robertson, A. W.; Yin, H.; Monro, S.; McFarland, S. A.; Syvitski, R. T.; Jakeman, D. L. Isolation and Synthetic Diversification of Jadomycin 4-Amino- l -Phenylalanine. J. Nat. Prod.2015, 78 (6), 1208–1214. https://doi.org/10.1021/np5009398
Reichardt, C.; Pinto, M.; Wächtler, M.; Stephenson, M.; Kupfer, S.; Sainuddin, T.; Guthmuller, J.; McFarland, S. A.; Dietzek, B. Photophysics of Ru(II) Dyads Derived from Pyrenyl-Substitued Imidazo[4,5- f ][1,10]Phenanthroline Ligands. J. Phys. Chem. A2015, 119 (17), 3986–3994. https://doi.org/10.1021/acs.jpca.5b01737
Robertson, A. W.; Martinez-Farina, C. F.; Smithen, D. A.; Yin, H.; Monro, S.; Thompson, A.; McFarland, S. A.; Syvitski, R. T.; Jakeman, D. L. Eight-Membered Ring-Containing Jadomycins: Implications for Non-Enzymatic Natural Products Biosynthesis. J. Am. Chem. Soc.2015, 137 (9), 3271–3275. https://doi.org/10.1021/ja5114672
Shi, G.; Monro, S.; Hennigar, R.; Colpitts, J.; Fong, J.; Kasimova, K.; Yin, H.; DeCoste, R.; Spencer, C.; Chamberlain, L.; Mandel, A.; Lilge, L.; McFarland, S. A. Ru(II) Dyads Derived from α-Oligothiophenes: A New Class of Potent and Versatile Photosensitizers for PDT. Coord. Chem. Rev.2015, 282–283, 127–138. https://doi.org/10.1016/j.ccr.2014.04.012
Stephenson, M.; Reichardt, C.; Pinto, M.; Wächtler, M.; Sainuddin, T.; Shi, G.; Yin, H.; Monro, S.; Sampson, E.; Dietzek, B.; McFarland, S. A. Ru(II) Dyads Derived from 2-(1-Pyrenyl)-1 H -Imidazo[4,5- f ][1,10]Phenanthroline: Versatile Photosensitizers for Photodynamic Applications. J. Phys. Chem. A2014, 118 (45), 10507–10521. https://doi.org/10.1021/jp504330s
Yin, H.; Stephenson, M.; Gibson, J.; Sampson, E.; Shi, G.; Sainuddin, T.; Monro, S.; McFarland, S. A. In Vitro Multiwavelength PDT with 3IL States: Teaching Old Molecules New Tricks. Inorg. Chem.2014, 53 (9), 4548–4559. https://doi.org/10.1021/ic5002368
Marchal, E.; Smithen, D. A.; Uddin, Md. I.; Robertson, A. W.; Jakeman, D. L.; Mollard, V.; Goodman, C. D.; MacDougall, K. S.; McFarland, S. A.; McFadden, G. I.; Thompson, A. Synthesis and Antimalarial Activity of Prodigiosenes. Org. Biomol. Chem.2014, 12 (24), 4132. https://doi.org/10.1039/c3ob42548g
Arenas, Y.; Monro, S.; Shi, G.; Mandel, A.; McFarland, S.; Lilge, L. Photodynamic Inactivation of Staphylococcus Aureus and Methicillin-Resistant Staphylococcus Aureus with Ru(II)-Based Type I/Type II Photosensitizers. Photodiagnosis Photodyn. Ther.2013, 10 (4), 615–625. https://doi.org/10.1016/j.pdpdt.2013.07.001
Lincoln, R.; Kohler, L.; Monro, S.; Yin, H.; Stephenson, M.; Zong, R.; Chouai, A.; Dorsey, C.; Hennigar, R.; Thummel, R. P.; McFarland, S. A. Exploitation of Long-Lived 3IL Excited States for Metal–Organic Photodynamic Therapy: Verification in a Metastatic Melanoma Model. J. Am. Chem. Soc.2013, 135 (45), 17161–17175. https://doi.org/10.1021/ja408426z
Smithen, D. A.; Forrester, A. M.; Corkery, D. P.; Dellaire, G.; Colpitts, J.; McFarland, S. A.; Berman, J. N.; Thompson, A. Investigations Regarding the Utility of Prodigiosenes to Treat Leukemia. Org Biomol Chem2013, 11 (1), 62–68. https://doi.org/10.1039/C2OB26535D
Rastogi, S.; Marchal, E.; Uddin, I.; Groves, B.; Colpitts, J.; McFarland, S. A.; Davis, J. T.; Thompson, A. Synthetic Prodigiosenes and the Influence of C-Ring Substitution on DNA Cleavage, Transmembrane Chloride Transport and Basicity. Org. Biomol. Chem.2013, 11 (23), 3834. https://doi.org/10.1039/c3ob40477c
Dupuis, S. N.; Robertson, A. W.; Veinot, T.; Monro, S. M. A.; Douglas, S. E.; Syvitski, R. T.; Goralski, K. B.; McFarland, S. A.; Jakeman, D. L. Synthetic Diversification of Natural Products: Semi-Synthesis and Evaluation of Triazole Jadomycins. Chem. Sci.2012, 3 (5), 1640. https://doi.org/10.1039/c2sc00663d
Dupuis, S. N.; Veinot, T.; Monro, S. M. A.; Douglas, S. E.; Syvitski, R. T.; Goralski, K. B.; McFarland, S. A.; Jakeman, D. L. Jadomycins Derived from the Assimilation and Incorporation of Norvaline and Norleucine. J. Nat. Prod.2011, 74 (11), 2420–2424. https://doi.org/10.1021/np200689w
Monro, S. M. A.; Cottreau, K. M.; Spencer, C.; Wentzell, J. R.; Graham, C. L.; Borissow, C. N.; Jakeman, D. L.; McFarland, S. A. Copper-Mediated Nuclease Activity of Jadomycin B. Bioorg. Med. Chem.2011, 19 (11), 3357–3360. https://doi.org/10.1016/j.bmc.2011.04.043
Yadav, P. N.; Beveridge, R. E.; Blay, J.; Boyd, A. R.; Chojnacka, M. W.; Decken, A.; Deshpande, A. A.; Gardiner, M. G.; Hambley, T. W.; Hughes, M. J.; Jolly, L.; Lavangie, J. A.; MacInnis, T. D.; McFarland, S. A.; New, E. J.; Gossage, R. A. Platinum-Oxazoline Complexes as Anti-Cancer Agents: Syntheses, Characterisation and Initial Biological Studies. MedChemComm2011, 2 (4), 274. https://doi.org/10.1039/c0md00211a
Cottreau, K. M.; Spencer, C.; Wentzell, J. R.; Graham, C. L.; Borissow, C. N.; Jakeman, D. L.; McFarland, S. A. Diverse DNA-Cleaving Capacities of the Jadomycins through Precursor-Directed Biosynthesis. Org. Lett.2010, 12 (6), 1172–1175. https://doi.org/10.1021/ol902907r
Monro, S.; Scott, J.; Chouai, A.; Lincoln, R.; Zong, R.; Thummel, R. P.; McFarland, S. A. Photobiological Activity of Ru(II) Dyads Based on (Pyren-1-yl)Ethynyl Derivatives of 1,10-Phenanthroline. Inorg. Chem.2010, 49 (6), 2889–2900. https://doi.org/10.1021/ic902427r
McFarland, S. A.; Cheng, K. A.; Lee, F. S.; Cozens, F. L.; Schepp, N. P. Nonthermalized Excited States in Ru(II) Polypyridyl Complexes Probed by Ultrafast Transient Absorption Spectroscopy with High Photon Energy Excitation. Can. J. Chem.2008, 86 (12), 1118–1125. https://doi.org/10.1139/v08-161
McFarland, S. A.; Magde, D.; Finney, N. S. Conformational Control of Excited-State Dynamics in Highly Distorted Ru(II) Polypyridyl Complexes. Inorg. Chem.2005, 44 (11), 4066–4076. https://doi.org/10.1021/ic0502729
McFarland, S. A.; Lee, F. S.; Cheng, K. A. W. Y.; Cozens, F. L.; Schepp, N. P. Picosecond Dynamics of Nonthermalized Excited States in Tris(2,2-Bipyridine)Ruthenium(II) Derivatives Elucidated by High Energy Excitation. J. Am. Chem. Soc.2005, 127 (19), 7065–7070. https://doi.org/10.1021/ja0461872
McFarland, S. A.; Finney, N. S. Modulating the Efficiency of Ru(II) Luminescence via Ion Binding-Induced Conformational Restriction of Bipyridyl Ligands. Chem. Commun.2003, No. 3, 388–389. https://doi.org/10.1039/b210254d
McFarland, S. A.; Finney, N. S. Fluorescent Signaling Based on Control of Excited State Dynamics. Biarylacetylene Fluorescent Chemosensors. J. Am. Chem. Soc.2002, 124 (7), 1178–1179. https://doi.org/10.1021/ja017309i
McFarland, S. A.; Finney, N. S. Fluorescent Chemosensors Based on Conformational Restriction of a Biaryl Fluorophore. J. Am. Chem. Soc.2001, 123 (6), 1260–1261. https://doi.org/10.1021/ja005701a
US Patents
Oral Hygiene Device. US Patent D932,023 issued Sept. 28, 2021.
Novel Polygonum Cuspidatum Extracts and Their Use as Photodynamic Inactivating Agents. US Patent No. 10,925,917, issued February 23, 2021.
Metal-based Coordination Complexes as Photodynamic Compounds and Their Use, US Patent 10,766,915 issued Sept. 8, 2020.
Polygonum Cuspidatum Extracts, US Patent 10,350,255 B2 issued July 16, 2019.
Metal-based Thiophene Photodynamic Compounds and Their Use, US Patent 9,676,806 B2 issued June 13, 2017.
Metal-based Thiophene Photodynamic Compounds and Their Use, US Patent 9,345,769 issued May 24, 2016.