Publications


2023

  1. Cole, H.D.; Vali, A.; Roque, J.A.; Shi, G.; Kaur, G.; Hodges, R.O.; Francés-Monerris, A.; Alberto, M.E.; Cameron, C.G.; McFarland, S.A., Ru(II) Phenanthroline-Based Oligothienyl Complexes as Phototherapy Agents. Inorg. Chem. 2023, 62, 21181–21200. https://doi.org/10.1021/acs.inorgchem.3c03216
  2. Azad, A.K.; Lilge, L.; Usmani, N.H.; Lewis, J.D.; Cole, H.D., Cameron, C.G.; McFarland, S.A.; Dinakaran, D.; Moore, R.B., High quantum efficiency ruthenium coordination complex photosensitizer for improved radiation-activated Photodynamic Therapy. Frontiers in Oncology 2023, 13. https://doi.org/10.3389/fonc.2023.1244709
  3. Oladipupo, O. E.; Prescott, M. C.; Blevins, E. R.; Gray, J. L.; Cameron, C. G.; Qu, F.; Ward, N. A.; Pierce, A. L.; Collinson, E. R.; Hall, J. F.; Park, S.; Kim, Y.; McFarland, S. A.; Fedin, I.; Papish, E. T. Ruthenium Complexes with Protic Ligands: Influence of the Position of OH Groups and π Expansion on Luminescence and Photocytotoxicity. Int. J. Mol. Sci. 2023, 24 (6), 5980. https://doi.org/10.3390/ijms24065980
  4. Cole, H.D.; Eroy, M.; Roque III, J.A.; Shi G.; Guirguis, M.; Fakhry, J.; Cameron, C.G.; Obaid, G.; McFarland, S.A., Establishing a Robust and Reliable Response from a Potent Osmium-Based Photosensitizer Via Lipid Nanoformulation. Photochem. Photobiol. 2023, 99, 751–760. https://doi.org/10.1111/php.13756
  5. Chettri, A.; Yang, T.; Cole, H.D.; Shi, G.; Cameron, C.G.; McFarland, S.A.; Dietzek-Ivansic, B., Using Biological Photophysics to Map the Excited-State Topology of Molecular Photosensitizers for Photodynamic Therapy. Angew. Chem. Int. Ed. 2023, 62, e202301452. https://doi.org/10.1002/anie.202301452

2022

  1. Shah, D.; Eroy, M.; Fakhry, J.; Moffat, A.; Fritz, K.; Cole, H.D.; Cameron, C.G.; McFarland, S.A.; Obaid, G., Enabling In Vivo Optical Imaging of an Osmium Photosensitizer by Micellar Formulation. Pharmaceutics 2022, 14, 2426. https://doi.org/10.3390/pharmaceutics14112426
  2. Munegowda, M.A.; Manalac, A.; Weersink, M.; McFarland, S.A.; Lilge, L., Ru(II) Containing Photosensitizers for Photodynamic Therapy: a Critique on Reporting and an Attempt to Compare Efficacy. Coord. Chem. Rev. 2022, 214712. https://doi.org/10.1016/j.ccr.2022.214712
  3. Handlovic, T.; Wahab, M. F.; Cole, H.; Alatrash, N.; Ramasamy E.; MacDonnell, F.; McFarland, S.A.; Armstrong, D. W., Insights into Enantioselective Separations of Ionic Metal Complexes by Sub/Supercritical Fluid Chromatography. Anal. Chimica Acta 2022, 340156. https://doi.org/10.1016/j.aca.2022.340156
  4. Obaid, G.; Bano, S.; Thomsen, H.; Callaghan, S.; Shah, N.; Swain, J. W. R.; Jin, W.; Ding, X.; Cameron, C. G.; McFarland, S. A.; Wu, J.; Vangel, M.; Stoilova-McPhie, S.; Zhao, J.; Mino-Kenudson, M.; Lin, C.; Hasan, T., Remediating Desmoplasia with EGFR-Targeted Photoactivable Multi-Inhibitor Liposomes Doubles Overall Survival in Pancreatic Cancer. Adv. Sci. 2022, 2104594. https://doi.org/10.1002/advs.202104594
  5. Roque III, J. A.; Cole, H. D.; Barrett, P. C.; Lifshits, L. M.; Hodges, R. O.; Kim, S.; Deep, G.; Francés-Monerris, A.; Alberto, M. E.; Cameron, C. G.; McFarland, S. A. Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. J. Am. Chem. Soc. 2022, 144, 8317–8336 https://doi.org/10.1021/jacs.2c02475 (Selected for JACS Spotlights: https://doi.org/10.1021/jacs.2c04867 )
  6. Cole, H.D.; Roque III, J. A.; Shi, G.; Lifshits, L.M.; Ramasamy, E.; Barrett, P. C.; Hodges, R.; Cameron, C.G.; McFarland, S.A. Anticancer Agent with Inexplicable Potency in Extreme Hypoxia: Characterizing a Light-Triggered Ruthenium Ubertoxin. J. Am. Chem. Soc. 2022, 144, 9543–9547 https://doi.org/10.1021/jacs.1c09010
  7. Chettri, A.; Cole, H. D.; Roque III, J. A.; Schneider, K. R. A.; Yang, T.; Cameron, C. G.; McFarland, S. A.; Dietzek-Ivanšić, B. Interaction with a Biomolecule Facilitates the Formation of the Function-Determining Long-Lived Triplet State in a Ruthenium Complex for Photodynamic Therapy. J. Phys. Chem. A, 2022, 126, 1336–1344 https://doi.org/10.1021/acs.jpca.1c09968
  8. Duguay, B.A.; Herod, A.; Pringle, E.S.; Monro, S.M.A.; Hetu, M.; Cameron, C.G.; McFarland, S.A.; McCormick, C. Photodynamic Inactivation of Human Coronaviruses. Viruses 2022, 14, 110. https://doi.org/10.3390/v14010110
  9. Konda, P.; Roque III, J. A.; Lifshits, L. M.; Alcos, A.; Azzam, E.; Shi, G.; Cameron, C. G.; McFarland, S. A.; Gujar S. Photodynamic therapy of melanoma with new, structurally similar, NIR-absorbing ruthenium (II) complexes promotes tumor growth control via distinct hallmarks of immunogenic cell death. Am. J. Cancer Res. 2022, 12, 210-228. https://pubmed.ncbi.nlm.nih.gov/35141014/
  10. Oladipupo, O.; Brown, S. R.; Lamb, R. W.; Gray, J. L.; Cameron, C. G.; DeRegnaucourt, A. R.; Ward, N. A.; Hall, J. F.; Xu, Y.; Petersen, C.; Qu, F.; Shrestha, A. B.; Thompson, M. K.; Bonizzoni, M.; Webster, C. E.; McFarland, S. A.; Kim, Y.; Papish, E. T. Light-Responsive and Protic Ruthenium Compounds Bearing Bathophenanthroline and Dihydroxybipyridine Ligands Achieve Nanomolar Toxicity Towards Breast Cancer Cells. Photochem. Photobiol. 2022, 98, 102–116 (Invited contribution to the Karen Brewer Memorial Issue, first published online Aug 2021 ) https://doi.org/10.1111/php.13508
  11. Cole, H. D.; Roque III, J. A.; Lifshits, L. M.; Hodges, R.; Barrett, P. C.; Havrylyuk, D.; Heidary, D.; Ramasamy, E.; Cameron, C. G.; Glazer, E. C.; McFarland, S. A. Fine-feature Modifications to Strained Ruthenium Complexes Radically Alter Their Hypoxic Anticancer Activity. Photochem. Photobiol. 2022, 98, 73–84. (Invited contribution to the Karen Brewer Memorial Issue, first published online Feb 2021). https://doi.org/10.1111/php.13395

2021

  1. Lifshits, L. M.; Roque III, J. A.; Ramasamya E.; Thummel, R. P.; Cameron, C. G.; McFarland, S. A. Ruthenium Photosensitizers for NIR PDT Require Lowest-Lying Triplet Intraligand (3IL) Excited States. J. Photochem. Photobiol. 2021, 8, 100067 https://doi.org/10.1016/j.jpap.2021.100067
  2. Chettri, A.; Schneider, K. R. A.; Cole, H.D.; Roque, J. A.; Cameron, C. G.; McFarland, S. A.; Dietzek, B. String-Attached Oligothiophene Substituents Determine the Fate of Excited States in Ruthenium Complexes for Photodynamic Therapy. J. Phys. Chem. A 2021, 125, 6985–6994 https://doi.org/10.1021/acs.jpca.1c04900
  3. Armstrong, D. W.; Yu, J.; Cole, H. D.; McFarland, S. A.; Nafie, J. Chiral resolution and absolute configuration determination of new metal-based photodynamic therapy antitumor agents. J. Pharm. Biomed. Anal. 2021, 204, 114233–114240. https://doi.org/10.1016/j.jpba.2021.114233
  4. Bataglioli, J. C.; Gomes, L. M. F.; Maunoir, C.; Smith, J. R.; Cole, H. D.; McCain, J.; Sainuddin, T.; Cameron, C. G.; McFarland, S. A.; Storr, T. Modification of Amyloid-Beta Peptide Aggregation via Photoactivation of Strained Ru(II) Polypyridyl Complexes. Chem. Sci. 2021, 12 (21), 7510–7520. https://doi.org/10.1039/D1SC00004G
  5. Perttilä, R.; Roque, J.; Orsila, L.; Ylöniemi, Z.; Kokko, E.; Cameron, C. G.; McFarland, S. A.; Uusimaa, P. Towards High-Throughput Light-Activated Drug Discovery Using Automated Plate Illuminator. In Proc. SPIE 11628 Mechanisms and Techniques in Photodynamic Therapy and Photobiomodulation, 2021, 116280F. https://doi.org/10.1117/12.2578408
  6. Qu, F.; Lamb, R. W.; Cameron, C. G.; Park S.; Oladipupo, O.; Gray, J. L.; Xu, Y.; Cole, H. D.; Bonizzoni, M.; Kim, Y.; McFarland, S. A.; Webster, C. E.; Papish, E. T. Singlet Oxygen Formation vs Photodissociation for Light-Responsive Protic Ruthenium Anticancer Compounds: The Oxygenated Substituent Determines Which Pathway Dominates. Inorg. Chem. 2021, 60, 2138-2148. https://doi.org/10.1021/acs.inorgchem.0c02027
  7. Chettri, A.; Roque, J. A.; Schneider, K. R. A.; Cole, H. D.; Cameron C. G.; McFarland, S. A.; Dietzek, B. It Takes Three to Tango – the length of the oligothiophene determines the nature of the long-lived excited state and the resulting photocytotoxicity of a Ru(II) photodrug. ChemPhotoChem. 2021, 5, 1. https://doi.org/10.1002/cptc.202000283
  8. Konda, P.; Lifshits, L. M.; Roque III, J. A.; Cole, H. D.; Cameron, C. G.; McFarland, S. A.; Gujar, S. Discovery of Immunogenic Cell Death-Inducing Ruthenium-Based Photosensitizers for Anticancer Photodynamic Therapy. OncoImmunology 2021, 10, 1863626. https://doi.org/10.1080/2162402X.2020.1863626

2020

  1. Roque, J. A.; Barrett, P. C.; Cole, H. D.; Lifshits, L. M.; Bradner, E.; Shi, G.; von Dohlen, D.; Kim, S.; Russo, N.; Deep, G.; Cameron, C. G.; Alberto, M. E.; McFarland, S. A. Os(II) Oligothienyl Complexes as a Hypoxia-Active Photosensitizer Class for Photodynamic Therapy. Inorg. Chem. 2020, 59 (22), 16341–16360. https://doi.org/10.1021/acs.inorgchem.0c02137
  2. Smithen, D. A.; Monro, S.; Pinto, M.; Roque, J.; Diaz-Rodriguez, R. M.; Yin, H.; Cameron, C. G.; Thompson, A.; McFarland, S. A. Bis[Pyrrolyl Ru(II)] Triads: A New Class of Photosensitizers for Metal–Organic Photodynamic Therapy. Chem. Sci. 2020, 11, 12047–12069. https://doi.org/10.1039/D0SC04500D
  3. Roque III, J. A.; Barrett, P. C.; Cole, H. D.; Lifshits, L. M.; Shi, G.; Monro, S.; von Dohlen, D.; Kim, S.; Russo, N.; Deep, G.; Cameron, C. G.; Alberto, M. E.; McFarland, S. A. Breaking the Barrier: An Osmium Photosensitizer with Unprecedented Hypoxic Phototoxicity for Real World Photodynamic Therapy. Chem. Sci. 2020, 11, 9784–9806. https://doi.org/10.1039/D0SC03008B
  4. Lifshits, L. M.; Roque III, J. A.; Konda, P.; Monro, S.; Cole, H. D.; von Dohlen, D.; Kim, S.; Deep, G.; Thummel, R. P.; Cameron, C. G.; Gujar, S.; McFarland, S. A. Near-Infrared Absorbing Ru(II) Complexes Act as Immunoprotective Photodynamic Therapy (PDT) Agents against Aggressive Melanoma. Chem. Sci. 2020, 11 (43), 11740–11762. https://doi.org/10.1039/D0SC03875J
  5. Al Subeh, Z. Y.; Raja, H. A.; Monro, S.; Flores-Bocanegra, L.; El-Elimat, T.; Pearce, C. J.; McFarland, S. A.; Oberlies, N. H. Enhanced Production and Anticancer Properties of Photoactivated Perylenequinones. J. Nat. Prod. 2020, 83 (8), 2490–2500. https://doi.org/10.1021/acs.jnatprod.0c00492
  6. Lifshits, L. M.; Roque, J. A.; Cole, H. D.; Thummel, R. P.; Cameron, C. G.; McFarland, S. A. NIR‐Absorbing Ru II Complexes Containing Α‐Oligothiophenes for Applications in Photodynamic Therapy. ChemBioChem 2020, 21, 3594–3607. https://doi.org/10.1002/cbic.202000419
  7. Schneider, K. R. A.; Chettri, A.; Cole, H. D.; Reglinski, K.; Brückmann, J.; Roque, J. A.; Stumper, A.; Nauroozi, D.; Schmid, S.; Lagerholm, C. B.; Rau, S.; Bäuerle, P.; Eggeling, C.; Cameron, C. G.; McFarland, S. A.; Dietzek, B. Intracellular Photophysics of an Osmium Complex Bearing an Oligothiophene Extended Ligand. Chem. – Eur. J. 2020, 26 (65), 14844–14851. https://doi.org/10.1002/chem.202002667
  8. Chamberlain, S.; Cole, H. D.; Roque, J.; Bellnier, D.; McFarland, S. A.; Shafirstein, G. TLD1433-Mediated Photodynamic Therapy with an Optical Surface Applicator in the Treatment of Lung Cancer Cells In Vitro. Pharmaceuticals 2020, 13 (7), 137. https://doi.org/10.3390/ph13070137
  9. Chen, Q.; Ramu, V.; Aydar, Y.; Groenewoud, A.; Zhou, X.-Q.; Jager, M. J.; Cole, H.; Cameron, C. G.; McFarland, S. A.; Bonnet, S.; Snaar-Jagalska, B. E. TLD1433 Photosensitizer Inhibits Conjunctival Melanoma Cells in Zebrafish Ectopic and Orthotopic Tumour Models. Cancers 2020, 12 (3), 587. https://doi.org/10.3390/cancers12030587
  10. McFarland, S. A.; Mandel, A.; Dumoulin-White, R.; Gasser, G. Metal-Based Photosensitizers for Photodynamic Therapy: The Future of Multimodal Oncology? Curr. Opin. Chem. Biol. 2020, 56, 23–27. https://doi.org/10.1016/j.cbpa.2019.10.004.
  11. Roque, J.; Havrylyuk, D.; Barrett, P. C.; Sainuddin, T.; McCain, J.; Colón, K.; Sparks, W. T.; Bradner, E.; Monro, S.; Heidary, D.; Cameron, C. G.; Glazer, E. C.; McFarland, S. A. Strained, Photoejecting Ru(II) Complexes That Are Cytotoxic Under Hypoxic Conditions. Photochem. Photobiol. 2020, 96 (2), 327–339. https://doi.org/10.1111/php.13174
  12. Ghosh, G.; Yin, H.; Monro, S. M. A.; Sainuddin, T.; Lapoot, L.; Greer, A.; McFarland, S. A. Synthesis and Characterization of Ru(II) Complexes with π‐Expansive Imidazophen Ligands for the Photokilling of Human Melanoma Cells. Photochem. Photobiol. 2020, 96 (2), 349–357. https://doi.org/10.1111/php.13177

2019

  1. McCain, J.; Colón, K. L.; Barrett, P. C.; Monro, S. M. A.; Sainuddin, T.; Roque III, J.; Pinto, M.; Yin, H.; Cameron, C. G.; McFarland, S. A. Photophysical Properties and Photobiological Activities of Ruthenium(II) Complexes Bearing π-Expansive Cyclometalating Ligands with Thienyl Groups. Inorg. Chem. 2019, 58 (16), 10778–10790. https://doi.org/10.1021/acs.inorgchem.9b01044
  2. Liu, B.; Monro, S.; Li, Z.; Jabed, M. A.; Ramirez, D.; Cameron, C. G.; Colón, K.; Roque, J.; Kilina, S.; Tian, J.; McFarland, S. A.; Sun, W. New Class of Homoleptic and Heteroleptic Bis(Terpyridine) Iridium(III) Complexes with Strong Photodynamic Therapy Effects. ACS Appl. Bio Mater. 2019, 2 (7), 2964–2977. https://doi.org/10.1021/acsabm.9b00312
  3. Liu, B.; Lystrom, L.; Cameron, C. G.; Kilina, S.; McFarland, S. A.; Sun, W. Monocationic Iridium(III) Complexes with Far-Red Charge-Transfer Absorption and Near-IR Emission: Synthesis, Photophysics, and Reverse Saturable Absorption: Monocationic Iridium(III) Complexes with Far-Red Charge-Transfer Absorption and Near-IR Emission: Synthesis, Photophysics, and Reverse Saturable Absor. Eur. J. Inorg. Chem. 2019, 2019 (16), 2208–2215. https://doi.org/10.1002/ejic.201900156
  4. Reichardt, C.; Monro, S.; Sobotta, F. H.; Colón, K. L.; Sainuddin, T.; Stephenson, M.; Sampson, E.; Roque, J.; Yin, H.; Brendel, J. C.; Cameron, C. G.; McFarland, S.; Dietzek, B. Predictive Strength of Photophysical Measurements for in Vitro Photobiological Activity in a Series of Ru(II) Polypyridyl Complexes Derived from π-Extended Ligands. Inorg. Chem. 2019, 58 (5), 3156–3166. https://doi.org/10.1021/acs.inorgchem.8b03223
  5. Wang, L.; Monro, S.; Cui, P.; Yin, H.; Liu, B.; Cameron, C. G.; Xu, W.; Hetu, M.; Fuller, A.; Kilina, S.; McFarland, S. A.; Sun, W. Heteroleptic Ir(III)N6 Complexes with Long-Lived Triplet Excited States and in Vitro Photobiological Activities. ACS Appl. Mater. Interfaces 2019, 11 (4), 3629–3644. https://doi.org/10.1021/acsami.8b14744
  6. Monro, S.; Colón, K. L.; Yin, H.; Roque, J.; Konda, P.; Gujar, S.; Thummel, R. P.; Lilge, L.; Cameron, C. G.; McFarland, S. A. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem. Rev. 2019, 119 (2), 797–828. https://doi.org/10.1021/acs.chemrev.8b00211
  7. Monro, S.; Cameron, C. G.; Zhu, X.; Colón, K. L.; Yin, H.; Sainuddin, T.; Hetu, M.; Pinto, M.; Fuller, A.; Bennett, L.; Roque, J.; Sun, W.; McFarland, S. A. Synthesis, Characterization and Photobiological Studies of Ru(II) Dyads Derived from α -Oligothiophene Derivatives of 1,10-Phenanthroline. Photochem. Photobiol. 2019, 95 (1), 267–279. https://doi.org/10.1111/php.13012
  8. Ghosh, G.; Belh, S. J.; Chiemezie, C.; Walalawela, N.; Ghogare, A. A.; Vignoni, M.; Thomas, A. H.; McFarland, S. A.; Greer, E. M.; Greer, A. S,S-Chiral Linker Induced U Shape with a Syn-Facial Sensitizer and Photocleavable Ethene Group. Photochem. Photobiol. 2019, 95 (1), 293–305. https://doi.org/10.1111/php.13000
  9. Liu, B.; Monro, S.; Jabed, M. A.; Cameron, C. G.; Colón, K. L.; Xu, W.; Kilina, S.; McFarland, S. A.; Sun, W. Neutral Iridium(III) Complexes Bearing BODIPY-Substituted N-Heterocyclic Carbene (NHC) Ligands: Synthesis, Photophysics, in Vitro Theranostic Photodynamic Therapy, and Antimicrobial Activity. Photochem. Photobiol. Sci. 2019, 18 (10), 2381–2396. https://doi.org/10.1039/C9PP00142E

2018

  1. Monjo, A.; Pringle, E.; Thornbury, M.; Duguay, B.; Monro, S.; Hetu, M.; Knight, D.; Cameron, C.; McFarland, S.; McCormick, C. Photodynamic Inactivation of Herpes Simplex Viruses. Viruses 2018, 10 (10), 532. https://doi.org/10.3390/v10100532
  2. Liu, B.; Monro, S.; Lystrom, L.; Cameron, C. G.; Colón, K.; Yin, H.; Kilina, S.; McFarland, S. A.; Sun, W. Photophysical and Photobiological Properties of Dinuclear Iridium(III) Bis-Tridentate Complexes. Inorg. Chem. 2018, 57 (16), 9859–9872. https://doi.org/10.1021/acs.inorgchem.8b00789
  3. Ghosh, G.; Colón, K. L.; Fuller, A.; Sainuddin, T.; Bradner, E.; McCain, J.; Monro, S. M. A.; Yin, H.; Hetu, M. W.; Cameron, C. G.; McFarland, S. A. Cyclometalated Ruthenium(II) Complexes Derived from α-Oligothiophenes as Highly Selective Cytotoxic or Photocytotoxic Agents. Inorg. Chem. 2018, 57 (13), 7694–7712. https://doi.org/10.1021/acs.inorgchem.8b00689
  4. Cruickshank, B.; Giacomantonio, M.; Marcato, P.; McFarland, S.; Pol, J.; Gujar, S. Dying to Be Noticed: Epigenetic Regulation of Immunogenic Cell Death for Cancer Immunotherapy. Front. Immunol. 2018, 9, 654. https://doi.org/10.3389/fimmu.2018.00654

2017

  1. Lazic, S.; Kaspler, P.; Shi, G.; Monro, S.; Sainuddin, T.; Forward, S.; Kasimova, K.; Hennigar, R.; Mandel, A.; McFarland, S.; Lilge, L. Novel Osmium-Based Coordination Complexes as Photosensitizers for Panchromatic Photodynamic Therapy. Photochem. Photobiol. 2017, 93 (5), 1248–1258. https://doi.org/10.1111/php.12767
  2. Reichardt, C.; Schneider, K. R. A.; Sainuddin, T.; Wächtler, M.; McFarland, S. A.; Dietzek, B. Excited State Dynamics of a Photobiologically Active Ru(II) Dyad Are Altered in Biologically Relevant Environments. J. Phys. Chem. A 2017, 121 (30), 5635–5644. https://doi.org/10.1021/acs.jpca.7b04670
  3. Smithen, D. A.; Yin, H.; Beh, M. H. R.; Hetu, M.; Cameron, T. S.; McFarland, S. A.; Thompson, A. Synthesis and Photobiological Activity of Ru(II) Dyads Derived from Pyrrole-2-Carboxylate Thionoesters. Inorg. Chem. 2017, 56 (7), 4121–4132. https://doi.org/10.1021/acs.inorgchem.7b00072
  4. Wang, L.; Yin, H.; Jabed, M. A.; Hetu, M.; Wang, C.; Monro, S.; Zhu, X.; Kilina, S.; McFarland, S. A.; Sun, W. π-Expansive Heteroleptic Ruthenium(II) Complexes as Reverse Saturable Absorbers and Photosensitizers for Photodynamic Therapy. Inorg. Chem. 2017, 56 (6), 3245–3259. https://doi.org/10.1021/acs.inorgchem.6b02624
  5. Wang, L.; Yin, H.; Cui, P.; Hetu, M.; Wang, C.; Monro, S.; Schaller, R. D.; Cameron, C. G.; Liu, B.; Kilina, S.; McFarland, S. A.; Sun, W. Near-Infrared-Emitting Heteroleptic Cationic Iridium Complexes Derived from 2,3-Diphenylbenzo[g]Quinoxaline as in Vitro Theranostic Photodynamic Therapy Agents. Dalton Trans. 2017, 46 (25), 8091–8103. https://doi.org/10.1039/C7DT00913E

2016

  1. Reichardt, C.; Sainuddin, T.; Wächtler, M.; Monro, S.; Kupfer, S.; Guthmuller, J.; Gräfe, S.; McFarland, S.; Dietzek, B. Influence of Protonation State on the Excited State Dynamics of a Photobiologically Active Ru(II) Dyad. J. Phys. Chem. A 2016, 120 (32), 6379–6388. https://doi.org/10.1021/acs.jpca.6b05957
  2. Sainuddin, T.; Pinto, M.; Yin, H.; Hetu, M.; Colpitts, J.; McFarland, S. A. Strained Ruthenium Metal–Organic Dyads as Photocisplatin Agents with Dual Action. J. Inorg. Biochem. 2016, 158, 45–54. https://doi.org/10.1016/j.jinorgbio.2016.01.009
  3. Culf, A. S.; Yin, H.; Monro, S.; Ghosh, A.; Barnett, D. A.; Ouellette, R. J.; Čuperlović-Culf, M.; McFarland, S. A. A Spectroscopic Study of Substituted Anthranilic Acids as Sensitive Environmental Probes for Detecting Cancer Cells. Bioorg. Med. Chem. 2016, 24 (5), 929–937. https://doi.org/10.1016/j.bmc.2015.12.044
  4. Sainuddin, T.; McCain, J.; Pinto, M.; Yin, H.; Gibson, J.; Hetu, M.; McFarland, S. A. Organometallic Ru(II) Photosensitizers Derived from π-Expansive Cyclometalating Ligands: Surprising Theranostic PDT Effects. Inorg. Chem. 2016, 55 (1), 83–95. https://doi.org/10.1021/acs.inorgchem.5b01838.
  5. Wang, C.; Lystrom, L.; Yin, H.; Hetu, M.; Kilina, S.; McFarland, S. A.; Sun, W. Increasing the Triplet Lifetime and Extending the Ground-State Absorption of Biscyclometalated Ir(III) Complexes for Reverse Saturable Absorption and Photodynamic Therapy Applications. Dalton Trans. 2016, 45 (41), 16366–16378. https://doi.org/10.1039/C6DT02416E

2015 and older

  1. Martinez-Farina, C. F.; Robertson, A. W.; Yin, H.; Monro, S.; McFarland, S. A.; Syvitski, R. T.; Jakeman, D. L. Isolation and Synthetic Diversification of Jadomycin 4-Amino- l -Phenylalanine. J. Nat. Prod. 2015, 78 (6), 1208–1214. https://doi.org/10.1021/np5009398
  2. Reichardt, C.; Pinto, M.; Wächtler, M.; Stephenson, M.; Kupfer, S.; Sainuddin, T.; Guthmuller, J.; McFarland, S. A.; Dietzek, B. Photophysics of Ru(II) Dyads Derived from Pyrenyl-Substitued Imidazo[4,5- f ][1,10]Phenanthroline Ligands. J. Phys. Chem. A 2015, 119 (17), 3986–3994. https://doi.org/10.1021/acs.jpca.5b01737
  3. Robertson, A. W.; Martinez-Farina, C. F.; Smithen, D. A.; Yin, H.; Monro, S.; Thompson, A.; McFarland, S. A.; Syvitski, R. T.; Jakeman, D. L. Eight-Membered Ring-Containing Jadomycins: Implications for Non-Enzymatic Natural Products Biosynthesis. J. Am. Chem. Soc. 2015, 137 (9), 3271–3275. https://doi.org/10.1021/ja5114672
  4. Shi, G.; Monro, S.; Hennigar, R.; Colpitts, J.; Fong, J.; Kasimova, K.; Yin, H.; DeCoste, R.; Spencer, C.; Chamberlain, L.; Mandel, A.; Lilge, L.; McFarland, S. A. Ru(II) Dyads Derived from α-Oligothiophenes: A New Class of Potent and Versatile Photosensitizers for PDT. Coord. Chem. Rev. 2015, 282–283, 127–138. https://doi.org/10.1016/j.ccr.2014.04.012
  5. Stephenson, M.; Reichardt, C.; Pinto, M.; Wächtler, M.; Sainuddin, T.; Shi, G.; Yin, H.; Monro, S.; Sampson, E.; Dietzek, B.; McFarland, S. A. Ru(II) Dyads Derived from 2-(1-Pyrenyl)-1 H -Imidazo[4,5- f ][1,10]Phenanthroline: Versatile Photosensitizers for Photodynamic Applications. J. Phys. Chem. A 2014, 118 (45), 10507–10521. https://doi.org/10.1021/jp504330s
  6. Yin, H.; Stephenson, M.; Gibson, J.; Sampson, E.; Shi, G.; Sainuddin, T.; Monro, S.; McFarland, S. A. In Vitro Multiwavelength PDT with 3IL States: Teaching Old Molecules New Tricks. Inorg. Chem. 2014, 53 (9), 4548–4559. https://doi.org/10.1021/ic5002368
  7. Marchal, E.; Smithen, D. A.; Uddin, Md. I.; Robertson, A. W.; Jakeman, D. L.; Mollard, V.; Goodman, C. D.; MacDougall, K. S.; McFarland, S. A.; McFadden, G. I.; Thompson, A. Synthesis and Antimalarial Activity of Prodigiosenes. Org. Biomol. Chem. 2014, 12 (24), 4132. https://doi.org/10.1039/c3ob42548g
  8. Arenas, Y.; Monro, S.; Shi, G.; Mandel, A.; McFarland, S.; Lilge, L. Photodynamic Inactivation of Staphylococcus Aureus and Methicillin-Resistant Staphylococcus Aureus with Ru(II)-Based Type I/Type II Photosensitizers. Photodiagnosis Photodyn. Ther. 2013, 10 (4), 615–625. https://doi.org/10.1016/j.pdpdt.2013.07.001
  9. Lincoln, R.; Kohler, L.; Monro, S.; Yin, H.; Stephenson, M.; Zong, R.; Chouai, A.; Dorsey, C.; Hennigar, R.; Thummel, R. P.; McFarland, S. A. Exploitation of Long-Lived 3IL Excited States for Metal–Organic Photodynamic Therapy: Verification in a Metastatic Melanoma Model. J. Am. Chem. Soc. 2013, 135 (45), 17161–17175. https://doi.org/10.1021/ja408426z
  10. Smithen, D. A.; Forrester, A. M.; Corkery, D. P.; Dellaire, G.; Colpitts, J.; McFarland, S. A.; Berman, J. N.; Thompson, A. Investigations Regarding the Utility of Prodigiosenes to Treat Leukemia. Org Biomol Chem 2013, 11 (1), 62–68. https://doi.org/10.1039/C2OB26535D
  11. Rastogi, S.; Marchal, E.; Uddin, I.; Groves, B.; Colpitts, J.; McFarland, S. A.; Davis, J. T.; Thompson, A. Synthetic Prodigiosenes and the Influence of C-Ring Substitution on DNA Cleavage, Transmembrane Chloride Transport and Basicity. Org. Biomol. Chem. 2013, 11 (23), 3834. https://doi.org/10.1039/c3ob40477c
  12. Dupuis, S. N.; Robertson, A. W.; Veinot, T.; Monro, S. M. A.; Douglas, S. E.; Syvitski, R. T.; Goralski, K. B.; McFarland, S. A.; Jakeman, D. L. Synthetic Diversification of Natural Products: Semi-Synthesis and Evaluation of Triazole Jadomycins. Chem. Sci. 2012, 3 (5), 1640. https://doi.org/10.1039/c2sc00663d
  13. Dupuis, S. N.; Veinot, T.; Monro, S. M. A.; Douglas, S. E.; Syvitski, R. T.; Goralski, K. B.; McFarland, S. A.; Jakeman, D. L. Jadomycins Derived from the Assimilation and Incorporation of Norvaline and Norleucine. J. Nat. Prod. 2011, 74 (11), 2420–2424. https://doi.org/10.1021/np200689w
  14. Monro, S. M. A.; Cottreau, K. M.; Spencer, C.; Wentzell, J. R.; Graham, C. L.; Borissow, C. N.; Jakeman, D. L.; McFarland, S. A. Copper-Mediated Nuclease Activity of Jadomycin B. Bioorg. Med. Chem. 2011, 19 (11), 3357–3360. https://doi.org/10.1016/j.bmc.2011.04.043
  15. Yadav, P. N.; Beveridge, R. E.; Blay, J.; Boyd, A. R.; Chojnacka, M. W.; Decken, A.; Deshpande, A. A.; Gardiner, M. G.; Hambley, T. W.; Hughes, M. J.; Jolly, L.; Lavangie, J. A.; MacInnis, T. D.; McFarland, S. A.; New, E. J.; Gossage, R. A. Platinum-Oxazoline Complexes as Anti-Cancer Agents: Syntheses, Characterisation and Initial Biological Studies. MedChemComm 2011, 2 (4), 274. https://doi.org/10.1039/c0md00211a
  16. Cottreau, K. M.; Spencer, C.; Wentzell, J. R.; Graham, C. L.; Borissow, C. N.; Jakeman, D. L.; McFarland, S. A. Diverse DNA-Cleaving Capacities of the Jadomycins through Precursor-Directed Biosynthesis. Org. Lett. 2010, 12 (6), 1172–1175. https://doi.org/10.1021/ol902907r
  17. Monro, S.; Scott, J.; Chouai, A.; Lincoln, R.; Zong, R.; Thummel, R. P.; McFarland, S. A. Photobiological Activity of Ru(II) Dyads Based on (Pyren-1-yl)Ethynyl Derivatives of 1,10-Phenanthroline. Inorg. Chem. 2010, 49 (6), 2889–2900. https://doi.org/10.1021/ic902427r
  18. McFarland, S. A.; Cheng, K. A.; Lee, F. S.; Cozens, F. L.; Schepp, N. P. Nonthermalized Excited States in Ru(II) Polypyridyl Complexes Probed by Ultrafast Transient Absorption Spectroscopy with High Photon Energy Excitation. Can. J. Chem. 2008, 86 (12), 1118–1125. https://doi.org/10.1139/v08-161
  19. McFarland, S. A.; Magde, D.; Finney, N. S. Conformational Control of Excited-State Dynamics in Highly Distorted Ru(II) Polypyridyl Complexes. Inorg. Chem. 2005, 44 (11), 4066–4076. https://doi.org/10.1021/ic0502729
  20. McFarland, S. A.; Lee, F. S.; Cheng, K. A. W. Y.; Cozens, F. L.; Schepp, N. P. Picosecond Dynamics of Nonthermalized Excited States in Tris(2,2-Bipyridine)Ruthenium(II) Derivatives Elucidated by High Energy Excitation. J. Am. Chem. Soc. 2005, 127 (19), 7065–7070. https://doi.org/10.1021/ja0461872
  21. McFarland, S. A.; Finney, N. S. Modulating the Efficiency of Ru(II) Luminescence via Ion Binding-Induced Conformational Restriction of Bipyridyl Ligands. Chem. Commun. 2003, No. 3, 388–389. https://doi.org/10.1039/b210254d
  22. McFarland, S. A.; Finney, N. S. Fluorescent Signaling Based on Control of Excited State Dynamics. Biarylacetylene Fluorescent Chemosensors. J. Am. Chem. Soc. 2002, 124 (7), 1178–1179. https://doi.org/10.1021/ja017309i
  23. McFarland, S. A.; Finney, N. S. Fluorescent Chemosensors Based on Conformational Restriction of a Biaryl Fluorophore. J. Am. Chem. Soc. 2001, 123 (6), 1260–1261. https://doi.org/10.1021/ja005701a

US Patents

  1. Oral Hygiene Device. US Patent D932,023 issued Sept. 28, 2021.
  2. Novel Polygonum Cuspidatum Extracts and Their Use as Photodynamic Inactivating Agents. US Patent No. 10,925,917, issued February 23, 2021.
  3. Metal-based Coordination Complexes as Photodynamic Compounds and Their Use, US Patent 10,766,915 issued Sept. 8, 2020.
  4. Polygonum Cuspidatum Extracts, US Patent 10,350,255 B2 issued July 16, 2019.
  5. Metal-based Thiophene Photodynamic Compounds and Their Use, US Patent 9,676,806 B2 issued June 13, 2017.
  6. Metal-based Thiophene Photodynamic Compounds and Their Use, US Patent 9,345,769 issued May 24, 2016.